
J .  Fluid Mech. (1991), vol. 228, p p .  661491 
Printed in Great Britain 

66 1 

Splitting, merging and wavelength selection of 
vortices in curved and/or rotating channel flow due 

to Eckhaus instability 
By Y. GUO AND W. H. FINLAY 

Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, 
Canada T6G 2G8 

(Received 14 June 1990 and in revised form 10 January 1991) 

In channels with rotation (about their spanwise axis) or curvature or both, steady 
two-dimensional vortices develop above a critical Reynolds number Re,, owing to 
centrifugal or Coriolis effects. The stability of these streamwise oriented roll cells to 
two-dimensional, spanwise-periodic perturbations (i.e. Eckhaus stability) is exam- 
ined numerically using linear stability theory and spectral methods. The results are 
then confirmed by nonlinear flow simulations. In channels with curvature or rotation 
or both, the Eckhaus stability boundary is found to be a small closed loop. Within the 
boundary, two-dimensional vortices are stable to spanwise perturbations. Outside 
the boundary, Eckhaus instability is found to cause the vortex pairs to split apart 
or merge together. For all channels examined, two-dimensional vortices are always 
unstable when Re > 1.7 Re,. Usually, the most unstable spanwise perturbations are 
subharmonic disturbances, which cause two pairs of vortices with small wave- 
numbers to be split apart by the formation of a new vortex pair, but cause two pairs 
of vortices with large wavenumber to merge into a single pair. Recent experimental 
observations of splitting and merging of vortex pairs are discussed. When Re is not 
too high (Re < 4.0 Re,), the wavenumbers of vortices are selected by Eckhaus 
instability and most experimentally observed wavenumbers are close to the ones 
that are least unstable to spanwise perturbations. 

1. Introduction 
As the Reynolds number, Re, is increased, the flow in channels with either curvature 

or rotation or both undergoes a supercritical transition from spanwise uniform one- 
dimensional Poiseuille type flow to a state with spanwise periodicity containing two- 
dimensional streamwise-oriented vortices. This transition is characterized by the 
one-dimensional flow losing its stability to spanwise perturbations, owing to  an 
imbalance of centrifugal, Coriolis and pressure forces. For fixed curvature or rotation 
rate, the transition occurs when Re exceeds some critical value Re,. When Re = Re,, 
there is only one possible spanwise wavenumber a, for the two-dimensional vortices 
(cf. Tritton & Davies 1985; Finlay, Keller & Ferziger 1988; Alfredsson & Persson 
1989; Finlay 1990 for a literature review on the primary instability of one- 
dimensional Poiseuille type flow to two-dimensional vortices in channels with either 
curvature or rotation, and Matsson & Alfredsson 1990 for channels with both 
curvature and rotation). At higher Re, a continuous band of stable wavenumbers for 
the two-dimensional vortices is expected. The limits of this band are given by several 
different instabilities of the two-dimensional vortices. For channels with infinite 
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FIQURE 1.  The geometry of curved and/or rotating channel is shown. The flow is periodic in z. 

span, one of the most important instabilities of the two-dimensional vortices is due 
to spanwise perturbations. In  this paper, linear stability theory and flow simulation 
are used to examine this type of instability numerically for the flow in channels with 
curvature or rotation or both. 

The channel geometry is given in figure 1. The channel spacing is d = ro-ri .  The 
streamwise and spanwise directions of the flow are given by 0 and z. The Reynolds 
number is Re = Ud/2v ,  where 0 is the mean (bulk) streamwise velocity. The radius 
ratio of the two walls is 7 = ri/ro.  The rotation number is defined as Ro = Od/2v, 
where D is the rotation speed of the system about the z-axis. The term rotating 
channel will be used to mean Ro =k 0 and = 1.0, while the term curved channel 
refers to  Ro = 0 and 7 < 1.0. Otherwise the channel has both curva,ture and rotation. 
The spanwise wavenumber of the vortices is defined as a = xd /h ,  where h is the 
spanwise vortex spacing. The term ' two-dimensional vortices ' indicates that each 
velocity component depends only on the two directions r and z. The flow is three- 
dimensional in the sense of having three velocity components. I n  channel flow 
experiments, the spanwise dimcnsion of the channel is h and the aspect ratio r = h/d 
is a finite number. 

Instabilities induced by centrifugal and Coriolis forces have been studied for many 
years. One classical example is Taylor-Couette flow. Years of effort by many 
researchers (cf. DiPrima & Swinney 1985) has led to considerable knowledge about 
the physics of the transition to turbulence in this geometry. Similar work is needed 
for the flow in channels with curvature or rotation or both. A better understanding 
of transition in these channel geometries may lead us to a better understanding of 
many flows including the flow inside impellers of centrifugal pumps or compressors, 
coolant flow in turbine blades, and deep-sea currents partitioned by submarine 
ridges. 

There has been some work done on the instabilities of two-dimensional vortices in 
channels with either curvature or rotation or both. Recently, Finlay et al. (1988) and 
Finlay (1990) have examined numerically the instability with respect to per- 
turbations that cause the vortices to become wavy in the streamwise direction. This 
instability does not restrict the spanwise wavenumber of the flow. These wavy 
vortices are similar to  oscillatory Rayleigh-BBnard convection or wavy Taylor 
vortices. Though the flow in channels with either curvature or rotation or both bears 
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some similarity to Taylor-Couette flow, recent experimental studies in channels with 
large aspect ratio (r 2 40) show there is considerable unsteadiness that is not present 
in Taylor vortex flow (cf. Ligrani & Niver 1988 for the curved channel; Alfredsson 
& Persson 1989 for the rotating channel ; Matsson & Alfredsson 1990 for the curved- 
rotating channel). When viewed in a spanwise-streamwise plane, the vortices cause 
long streaks in experimental flow visualizations. These streaks are occasionally split 
apart by new streaks or merge together (Alfredsson & Persson 1989; Matsson & 
Alfredsson 1990). In this paper we will refer to these phenomena as the splitting and 
merging of vortex pairs. These terms are always used to describe the behaviour of 
two or more vortex pairs, not individual vortex tubes. In the curved channel, 
spanwise motion, modulation and oscillation of vortices are also observed (Ligrani & 
Niver 1988). These phenomena are not well understood. Studies on the instability of 
two-dimensional vortices to spanwise perturbations in Rayleigh-BBnard convection 
and Taylor-Couette flow show that an Eckhaus instability restricts the band of 
stable wavenumbers (Clever & Busse 1974; Riecke & Paap 1986). For Taylor vortices 
good agreement exists between theoretical and experimental results for the band of 
stable wavenumbers (Riecke & Paap 1986 ; Dominguez-Lerma, Cannell & Ahler 
1986). If vortices are created with wavenumber outside the stable region, Eckhaus 
instability causes the vortices to change their wavelength so that it lies in the stable 
region. But in channels with either curvature or rotation or both, little of such work 
has been done. 

The instability with respect to spanwise perturbations bears the name of Eckhaus, 
since the first study of this type of instability was done by Eckhaus (1965, Eckhaus’ 
work first appeared in 1963 in French in Journal de Physique) for Tollmien- 
Schlichting waves, using an amplitude expansion method. His result shows that 
for a system of real eigenvalues and parameters, the band of stable wavenumbers a 
is given by (a , -a_)/ l /3<a-ac < (a+-ac)/ l /3 ,  where a- and a+ are the 
wavenumbers on each branch of the neutral curve of primary instability for a given 
Re. The Eckhaus criterion has been proven valid in Rayleigh-BBnard convection and 
Taylor-Couette flow for Re close to Re,. Stuart & DiPrima (1978) have corrected the 
above criterion for a general periodic flow and demonstrated the equivalence between 
the Eckhaus instability and the sideband instability of Benjamin & Feir (1967). To 
our knowledge, the stability criterion they give is the only available criterion for the 
flow in curved and/or rotating channels. However, this criterion is only valid in the 
region close to Re,. 

A t  low Re in curved and/or rotating channels, the wavenumbers of experimentally 
observed vortices are close to those with the maximum growth rate of primary 
instability (the maximum primary growth rate, cf. Finlay et al. 1988; Alfredsson & 
Persson 1989; Ligrani & Niver 1988). This suggests that perturbations with these 
wavenumbers develop faster than others from the one-dimensional flow, thus 
becoming the dominant wavenumbers in the fully developed vortex flow. This is the 
only available comment in the literature regarding a mechanism for spanwise 
wavenumber selection in channels with either curvature or rotation. Yet this 
comment does not apply to high Re where the observed wavenumbers are 
considerably smaller than those with maximum primary growth rate (Finlay et al. 
1988; Alfredsson & Persson 1989; Ligrani & Niver 1988). 

In this paper, the Eckhaus instability of the flow in channels with either curvature 
or rotation or both is studied. The formulation of the problem and numerical method 
we use are briefly described in $2. In $3, we present Eckhaus boundaries for channels 
with either curvature or rotation or both. We discuss the splitting and merging of 
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vortices in $4. A spanwise wavenumber selection mechanism is discussed in $5 and 
recurrent splitting and merging in 5 6 .  Nonlinear flow simulations of splitting, 
merging and wavelength selection are given $7.  

2. Theory and numerical method 

V p  is a constant and the velocity of the flow can be represented by 
For steady, two-dimensional, streamwise-oriented vortices, the pressure gradient 

where $ is the stream function. The governing equations are the incompressible, 
steady, Navier-Stokes equations : 

I 1 

P 
uo.Vuo = - - - V p + ~ V ~ ~ ~ - 2 5 2 e , x u ~ ,  

v-uo = 0. 

Periodic boundary conditions are imposed in the z-direction, since the flow is 
assumed to have infinite span. Spectral methods are used to solve the above 
equations. We use a Fourier Galerkin method in the z-direction and a Chebyshev tau 
method in the r-direction. To eliminate aliasing error, the $ rule is used to evaluate 
the nonlinear terms (cf. Canuto et al. 1988). Adequate reso!ution is insured by 
monitoring the energies in the highest modes. In our computation, the numbers of 
Fourier modes N and Chebyshev modes M vary from 16 x 16 to 20 x 26 ( N x M )  
depending on Re, 7, Ro and the spanwise wavenumber a of the vortices. Normally we 
include only one pair of vortices in the computational box. 

Once the two-dimensional vortex flow uo is found, its stability can be examined 
using linear stability analysis. For small disturbances u’, the perturbation equation 
can be linearized as 

auf 1 
-+uo-Vu’+u’-Vuo = ---Vp’+vV2~’-2252e,xu’, 
at P 

v - u ’  = 0.  

In general the perturbation u’ can be expressed as 

u’(r, 0, z )  = E(r, z )  exp [st + i(d8 + bz)], 

I (2.3) 

where d and b are the streamwise and spanwise wavenumbers of the perturbation. 
Since we are only interested in the spanwise perturbation, we set d = 0. Inserting the 
above expression into (2.3), the stability problem becomes an eigenvalue problem : 
the stability of uo is determined by u, the real part of the eigenvalue s = u+ iw. The 
flow pattern of the perturbation is given by 

Re {E(r,  z )  exp (ibz)}. (2.5) 

Fourier Galerkin and Chebyshev tau spectral methods are used to solve the above 
eigenvalue problem. To reduce the number of unknown variables, the following 
representation of the perturbation is used : 

u‘ = V x v e ,  +t ( l -q )  V x V x Xe,. (2.6) 
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Equation (2.3) then is reduced to two scalar equations: e , . V x  (2.3) and 
e,.V x V x  (2.3). If the resolution of uo is N x M ,  the dimension of the result- 
ing complex eigenvalue problem is 2 x (M-2)(N+ l), compared with 
(M-  1)(L$V+ 1) + (M-3)(13V) for the wavy type instability where only the out-phase 
(or in-phase) modes are needed (Finlay et al. 1988; Jones 1981, 1985). Computation 
of the Eckhaus instability is thus much more expensive than in the wavy instability, 
especially when N x M  is large. Among 2 x (M-2)(N+ 1) eigenvalues, we are only 
interested in the eigenvalue with the largest real part. We will use the term ‘Eckhaus 
eigenvalue ’ to refer to this eigenvalue and ‘ Eckhaus growth rate ’ to refer to the real 
part of this eigenvalue. A similar method for solving the eigenvalue problem was used 
successfully by Clever & Busse (1974) for Rayleigh-BBnard convection and by 
Nagata (1986, 1988) and Jones (1985) for Taylor-Couette flows. More details of this 
method can be found in their papers. 

To avoid a singularity when 7 = 1.0 the non-dimensional variables must be chosen 
carefully. The following non-dimensional variables (x, y, z, t )  are used in our 
formulation : 

T / T o  = ; ( l+q)+$(l-7)x,  
6 = &1-r,Y, 

1 
2a z*/r0 = - (1 - 7) 2, 

where z* and t* are dimensional, - 1.0 < x < 1.0 and 0 4 z < 2%. The perturbation 
wavenumber b is thus non-dimensionalized by the spanwise wavenumber of the 
vortices 2tt/h. The resulting codes were extensively verified by duplicating the 
results of previous authors, including the Eckhaus boundary for Taylor vortices 
obtained by Riecke & Paap (1986), the wavy instability (b = 0, d =I= 0) results for 
Taylor vortices obtained by Jones (1985), and the wavy instability results obtained 
in channel flows with curvature or rotation by Finlay et al. (1988) and Finlay (1990). 

It has been reported (Zebib 1984; Gardner, Trogdon & Douglass 1989) that the 
Chebyshev tau method produces spurious eigenvalues and in some cases i t  is difficult 
to distinguish true eigenvalues from spurious ones. In  our problem, spurious 
eigenvalues are also found. However, because only one spurious eigenvalue with a 
positive real part is produced by the Chebyshev tau method for each Fourier mode 
and these spurious eigenvalues always have much larger magnitude (181) than the true 
eigenvalues (cf. Fox & Parker 1968), it is not difficult to distinguish between the true 
and spurious eigenvalues. The spurious eigenvalues can also be found easily by 
changing the number of modes used, i.e. M and N; this causes the spurious 
eigenvalues to change drastically whereas the true eigenvalues vary little with M and 
N for sufficiently large M and N. 

It can be shown that for any spanwise periodic flow, the eigenvalue s = a+ iw and 
the non-dimensional spanwise perturbation wavenumber b have the following 
relation : 

s(b)  = S ( + k + b ) ,  (2.7) 
where 0 < b < 1.0 and k = 1,2,3,  ... . This result reduces the values of b we need 
examine to 0 < b < 4, since setting k = 1 shows that s(b) = s(1 -b) (i.e. s is symmetric 
about b = 4) and setting k = 2,3,4, .  . . , covers the remaining b. 
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Equation (2.7) applies for any spanwise periodic now. Our numerical results verify 
(2.7) for both Taylor-Couette flow and the flow in channels with either curvature or 
rotation or both. The numerical results given by Nagata & Busse (1983, their figure 
10) and by Paap & Riecke (1990, their figure 2) also demonstrate the symmetry 
property of (T about b = 0.5 for 0 < b <  1 in buoyancy driven shoar-layer flow and 
Taylor-Couette now. It seems some previous researchers were not aware of 
this property. I ts  immediate significance is to drastically reduce the range of pertur- 
bation wavenumbers that need to bc explored and thus to reduce computational 
expense. In our studies, since the numerical difference between the eigenvalues s for 
0 < b < 0.5 and 0.5 < b < 1.0 is less than 0.1 % for the stated resolution, we only 
calculate s for 0 < b < 0.5. The values of s for 0.5 < b < 1.0 are obtained from the 
symmetry property in (2.7). 

3. Eckhaus stability boundary 
The Eckhaus stability boundary is determined by a sign change in the Eckhaus 

growth rate CT as the parameters of the system are varied. Within the Eckhaus 
boundary, the Eckhaus growth rate is always negative. In  the region neighbouring 
the Eckhaus boundary, our numerical results show the eigenvalue with the 
maximum Eckhaus growth rate is always real. The stability boundary is thus 
determined by non-oscillatory perturbations. Figure 2 shows the Erkhaus boundaries 
for several channels with either curvature or rotation or both. In  a curved channel 
(7 = 0.975) with rotation, Matsson & Alfredsson (1990) find the primary instability 
occurs as a Hopf bifurcation when -0.014 > Ro > -0.0164. Thus for Ro in this range 
there are no steady two-dimensional vortex solutions. The two cases we present in 
figure 2 ( c )  a t  Ro = -0.0125 and -0.02 arc just outside the range ofRo for the primary 
instability to appear as a Hopf bifurcation. Figurc 2 shows that the Eckhaus stable 
region for the flow in curved and/or rotating channels is a small closed region tangent 
to the minimum of the neutral stability curve for the primary instability. In  all cases 
calculated by us, the Eckhaus boundary is only a weak function of r,~ and Ro. 

When compared to other spanwise periodic flows known to the authors, channel 
flows with either curvature or rotation or both exhibit significant differences. For 
example in Taylor-Couette flow, the Eckhaus boundary is an open region, i.e. for any 
Re, there is always a band of stable wavenumber a. On the Eckhaus boundary, the 
spanwise wavenumber of perturbations, b,  approaches zero when Re is not very high 
(Riecke & Paap 1986). When Re is high, the boundary is given by b = 0.5 (Paap & 
Riecke 1990). Paap & Riecke (1990) refcr to this as a short-wavelength instability, 
in order to distinguish it from the long-wavelength nature of the classical Eckhaus 
instability. Numerical calculations done by us for Taylor-Couette flow show that as 
a moves away from the Eckhaus boundary, b approaches 0.5 when Re is not very 
high. As Re increases, this happens very quickly. This is consistent with the results 
given by Paap & Rieckc (1990). Our results also show that for any Re, 01 and b,  the 
eigenvalue with maximum real part is always real in the Taylor-Couette problem. All 
parameters of the system are thus real and the Eckhaus stability criterion given by 
Eckhaus (1965) is valid in the region near Re, (Riecke & Paap 1986). 

I n  channels with either curvature or rotation or both, the situation is much more 
complicated. We have studied the case of the curved channel with r , ~  = 0.975 most 
carefully. Our results show that near the left-hand side of the Eckhaus boundary, the 
eigenvalue with Eckhaus growth rate is real for any b. Figure 3 shows r ( b )  at Re = 
1.07 Re, (figure 3 a )  and 1.225 Re, (figure 3b) as a approaches the left-hand side of the 
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FIGURE 2. Eckhaus stability boundaries are shown for curved and/or rotating channel flow. The 
primary stability boundary is included for reference. (a) Shown for curved channels are Eckhaus : 
-,7 = 0.975(Rec = 1 1 4 . 2 6 , ~ ~  = 1.98);---,7 = 0.7(Re, = 3 5 . 8 3 , ~ ~  = 2.07);andprimary:----, 
7 = 0.975; -----, 9 = 0.7. ( b )  Shown for rotating channels are Eckhaus: -, Ro = 0.005 (Re, = 

, RO = 0.005; -----, 
Ro = 0.25. (c) Shown for curved-rotating channels are Eckhaus: -, 7 = 0.975,Ro = -0.0125 (Re, 

, 7 =  

198.95, u, = 2.01); ---, Ro = 0.25 (Re, = 44.30, u, = 2.46); and primary: 

= 275.4, a, = 1.96); ---, 7 = 0.975, Ro = -0.02 (Re, = 195.0, u, = 2.16); and primary: 
0.975, RO = -0.0125; -----, 7 = 0.975, RO = -0.02. 
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FIGURE 3, Eckhaus growth rate u as a function of spanwise perturbation wavenumber b in a 
curved channel (7 = 0.975) as the spanwise wavenumber a of two-dimensional vortices approaches 
the left-hand side of the Eckhaus boundary (a,,,,) at (a )  Re = 1.07Rec and (b) Re = 1.225h!ec. In ( a ) :  
ale,, = 1.8; 0 ,  a = 1.7; 0, IL = 1.75; A, a = 1.8; +, a = 1.85. In ( b ) :  a,,,, = 2.355; 0 ,  a = 1.6; 0, 
a = 1.8; A, a = 2.0; +, a = 2.3; 0 ,  a = 2.35; x ,  a = 2.4; 0 ,  a = 2.45. 

Eckhaus boundary. Figure 3 ( a )  shows that at Re = 1.07 Re,, b = 0 determines the 
Eckhaus boundary. Figure 3(b),  however, shows that a t  Re = 1.225 Re,, b = 0.5 
determines the boundary. 

In  the neighbourhood of the right-hand side of the Eckhaus boundary, the 
eigenvalue with Eckhaus growth rate is not real for all b when Re > 1.1 Re,. For some 
b,  a complex conjugate pair has the maximum real part. Figure 4 shows the 
eigenvalues s(b) for various a near the right-hand side of the Eckhaus boundary a t  
Re = 1.07Re, (figure 4a)  and Re = 1.225Re, (figure 4 b ) .  The eigenvalue has zero 
imaginary part a t  Re = 1.07Re, so only cr(b) is shown in figure 4 (a ) .  In  figure 4(b)  only 
the positive imaginary part of the eigenvalue is shown. By using different numbers 
of Chebyshev modes and Fourier modes, we have verified that these complex 
eigenvalues are not spurious eigenvalues produced by the Chebyshev tau method. 
Figure 4(a )  shows that a t  Re = 1.07ReC, b = 0.25 on the boundary. Figure 4(b)  shows 
that a t  Re = 1.225ReC, b = 0.5 on the boundary. Figure 4 also shows that the 
imaginary part of the eigenvalue which determines the Eckhaus boundary is zero on 
the boundary. 

The value of b(Re) on the boundary is shown in figure 5.  On both sides of the 
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side of the boundary. 
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FIQURE 6. -----, stability criterion of Eckhaus (1965); -, the primary stability boundary of 
Finlay et al. (1988) and 0 ,  the Eckhaus stability boundary in a curved channel with 7 = 0.975. 

boundary, b reaches 0.5 when Re 2 1.l75Rec. Clearly here the boundary defined by 
the instability of two-dimensional vortices to spanwise perturbations is not the 
classical Eckhaus stability boundary ( b  +- 0) found in Taylor-Couette flow. When 
Re < 1.125ReC, only the left-hand side of the boundary is of the classical Eckhaus 
type. For simplicity, we still call the entire boundary an Eckhaus boundary. Figure 6 
shows a comparison of the Eckhaus criterion (Eckhaus 1965), primary stability 
boundary (Finlay et al. 1988) and the Eckhaus boundary we have determined, all for 
a curved channel with g = 0.975. The Eckhaus stability criterion does not apply to 
the right-hand side of the Eckhaus boundary even in the region close to Re,. On the 
left-hand side, it is valid with reasonable accuracy up to Re < 1.04ReC. In 
Taylor-Couette flow, the Eckhaus stability criterion is valid with reasonable 
accuracy up to l.lRe, for both sides of the boundary (Riecke & Paap 1986). We 
believe that b $: 0 and non-real eigenvalues on the right-hand side of the boundary 
are the reason why the Eckhaus criterion is not valid here. (Another case where the 
Eckhaus criterion does not apply is the inclined shear layer driven by wall heating 
(Nagata & Busse 1983). There, the Eckhaus criterion is invalid on both sides of the 
Eckhaus boundary even near Re,). Although the perturbation equations for both 
Taylor-Couette flow and curved and/or rotating channel flow have the same form 
(2.3), the base flow uo is not the same. In  channel flow, the streamwise component of 
uo decreases to zero away from a maximum near the centre of the channel, whereas 
in Taylor-Couette flow, the streamwise velocity is maximum a t  a wall. We believe 
this may be responsible for the difference between the Eckhaus instabilities in these 
geometries. 

Beyond the top of the Eckhaus boundary, if Re/Re, is not too high and a is not too 
small or too large, the eigenvalue with the maximum Eckhaus growth rate is given 
by b = 0.5 and is real. In  the curved channel with 17 = 0.975, we find the eigenvalue 
with the maximum Eckhaus growth rate is entirely real in the region of Re G 3.5ReC 
and 1.8 < a < 5.0. But a t  given Re there does exist a spanwise wavenumber a' such 
that when a >a', Eckhaus eigenvalues are complex for some b =I= 0.5. For example, 
at Re = 2.OReC, a' = 3.5. 

When RelRe, is very high, for example Re/Re, > 3.2 in rotating channels, the real 
part of a complex conjugate pair is the largest €or some a and so the corresponding 
perturbation is oscillatory. For example, a t  Re = 472.5 (RelRe, = 5.56) in the 
rotating channel Ro = 0.03, we find that when 2.0 < a < 3.0, an oscillatory unstable 
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mode has the largest cr, but for a < 2.0 and a 2 3.75 the most unstable mode has zero 
imaginary part. Because the Eckhaus instability is probably less important at  high 
Re than the wavy instability, and the computation becomes very expensive, only a 
few high Re cases have been explored. More work needs to be done before this type 
of oscillatory unstable mode can be understood. 

Results similar to those discussed above were found in all channels that we 
examined. In all cases, two-dimensional vortices are unstable to spanwise 
perturbations when Re > 1.7Rec (they are often unstable a t  even lower Re). Since the 
Eckhaus stable region is small and most experiments have been done outside this 
region, the instability associated with the most unstable mode, which usually has 
b = 0.5, is an important instability in channel flows with curvature or rotation or 
both. 

4. Splitting and merging of vortices 
In channel flow experiments, vortex pairs are sometimes observed to merge 

together (reducing the number of vortices across the channel) or to be split apart by 
the formation of new vortex pairs (Ligrani & Niver 1988; Alfredsson & Persson 1989; 
Matsson & Alfredsson 1990). In some cases, the merging and splitting of vortex pairs 
happens repetitively (Ligrani, Kendall & Longest 1990). Similar phenomena have 
also been reported by Finlay et al. (1988), Finlay (1990) and Bland & Finlay (1991) 
in their numerical simulations of channel flows with curvature or rotation. We 
believe that the splitting and merging of vortex pairs are associated with the 
instability of two-dimensional vortices to spanwise perturbations. In  0 3 our linear 
stability results indicate that no two-dimensional vortex flow is stable to spanwise 
perturbations when Re > 1.7Rec. In order to understand how these two-dimensional 
vortex pairs lose their stability to spanwise perturbations and split apart or merge 
together, we examine the flow pattern of the most unstable mode of linear stability 
theory. The flow pattern of the most unstable mode is given by the eigenfunction 
(2.5), which has the largest growth rate u. It grows at  the rate exp (crt). 

4.1. Taylor-Couette flow 
First, Taylor vortex flows are studied, because here linear stability theory 
calculations (Riecke & Paap 1986) and experimental observation (Dominguez-Lerma 
et al. 1986) of the Eckhaus boundary show good agreement. The pairing of vortices 
has been discussed by Paap & Riecke (1990) using bifurcation diagrams. Here we will 
discuss the splitting and merging of vortex pairs from the perspective of the flow 
patterns of the most unstable modes. 

As mentioned before, as a moves away from the Eckhaus boundary in Taylor 
vortex flow, the value of b corresponding to the maximum Eckhaus growth rate 
increases from 0 to 0.5. Figures 7 and 8 show the Taylor vortices (figures 7a, Sa),  their 
most unstable modes (figures 7 b, 8 b )  and linear superpositions of these two (figures 7c, 
8 c ,  8 d )  at Re = 2.ORe, outside each side of the Eckhaus boundary, where the maxi- 
mum Eckhaus growth rate is given by b = 0.5 (the Eckhaus boundary has alelt = 1.188, 
aright = 2.425). In figures 7 ( a )  and 8 ( a ) ,  the centres of the Taylor vortex pairs are 
at z/h = 0, 1.0 and 2.0, where the fluid flows from the convex wall to the concave 
wall (the outflow region). The streamwise direction is out of the plane of the plot. In 
figure 7 ( b ) ,  the unstable mode has three pairs of vortices in the space of two pairs of 
base vortices. If the perturbation maintains this character in the nonlinear state, one 
extra pair of vortices would be produced out of every two base pairs. Figure 7 (c) is 
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FIGURE 7. (a )  Taylor vortices, ( b )  their most unstable mode, and (c) Taylor vortices + the most 
unstable mode, projected onto the ( r ,  2)-plane at Re = 2.OReC, 7 = 0.75 and z = 1.17, outside the 
left-hand side of the Eckhaus boundary (ale,, = 1.188). In (c), the kinetic energy of the most 
unstable mode is 1.4% of the base flow's kinetic energy. b = 0.6 for the most unstable mode. 

a plot of the base flow (figure 7 a )  superimposed with the most unstable eigenfunction 
(figure 7 b).  The kinetic energy of the eigenfunction in figure 7 (c) has been set to 1.4% 
of the base flow's kinetic energy. A new pair of vortices is seen a t  z / A  = 0.5 near the 
convex wall that splits apart the pairs of vortices on either side of z /h  = 0.5 in the 
base flow. This indicates that splitting of vortices occurs upon exiting the left-hand 
side of the Eckhaus boundary. Outside the right-hand side of the Eckhaus boundary 
(figure 8 b ) ,  one vortex pair of the unstable mode takes the space of two pairs of the 
base flow (except for small weak secondary vortices near the walls). Figure 8 (c) shows 
the most unstable eigenfunction (figure 8 b )  superimposed on the base flow (figure 
8a). The kinetic energy of the perturbation is 7 YO of the base flow's kinetic energy, 
which is not a linear perturbation but the larger perturbation is used for visual 
clarity. (The effect of the perturbation on the base flow is qualitatively independent 
of the perturbation amplitude.) The two vortex pairs centred at  z/h = 1.0 and 2.0 in 
the base flow are squeezed toward z/h = 1.5 by the two single vortices at x/h = 1.0 
and 2.0 in the eigenfunction. The two base vortices on either side of z / A  = 1.5 are 
weakened. This is seen more clearly when the percentage of the perturbation 
increases to 50% in figure 8 ( d ) .  If this character of the perturbation is maintained 
in the nonlinear state, we can expect that the two vortices on either side of z / A  = 
1.5 in the base flow will disappear. Thus one out of every two pairs of vortices will 
be lost, i.e. merging of vortices occurs upon exiting the right-hand side of the 
Eckhaus boundary. 

Our numerical results show that the number of vortices in the perturbation 
eigenfunction depends on b. Over a distance hlb, there is one extra pair (left-hand 
side of the boundary) or one less pair (right-hand side of the boundary). For example 
when a = 2.3 at Re = l.me, (the right-hand side of Eckhaus boundary has aright = 
2.28 at this Re), the maximum Eckhaus growth rate is given by b = 0.1. The 
corresponding eigenfunction shows that nine pairs of the perturbation vortices 
occupy the space of ten pairs of the base flow, i.e. only one pair will be lost for every 
ten pairs of base vortices. Thus when a is close to the Eckhaus boundary where the 
most unstable mode has small b,  a relatively small number of vortices will be 
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8. Same as figure 7 but at a = 2.475, outside the right-hand side of the Eckhaus boundary 
2.425). In (c), the kinetic energy of the most unstable model is 7 YO of the base flow’s kinetic 
In (d), the percentage of the most unstable mode is 50%. 

produced or lost for a given number of base vortices. Further away from the 
boundary where the most unstable disturbance has b = 0.5, a larger number of 
vortices will be produced or lost. 

In Taylor-Couette flow experiments, the spanwise wavenumber of the base vortex 
flow can be controlled by using adjustable spanwise walls (Dominguez-Lerma et al. 
1986). Once Taylor vortices of the desired wavenumber are developed at  high Re, the 
Eckhaus boundary can be found by decreasing Re until the flow loses its stability. 
Usually only one pair of vortices is produced or lost when the flow crosses the 
Eckhaus boundary. Based on our results, only a single pair appears or disappears 
because as the flow crosses the boundary into the unstable region, unstable 
perturbations occur with b slightly greater than zero. When unstable modes occur 
with b having a certain value, the finite span of the experimental device allows an 
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FIGURE 9. (a) Two-dimensional vortices, ( b )  their most unstable mode and ( c ,  d )  two-dimensional 
vortices+the most unstable mode, in a curved channel (7 = 0.975) at Re = 2.OReC, a = 2.0 
projected onto the ( r ,  2)-plane. In (c), the kinetic energy of the most unstable mode is 7% of the 
base flow's kinetic energy. In  (d ) ,  the percentage of the most unstable mode is 20%. The most 
unstable mode has b = 0.5. 

extra pair of vortices to be produced or absorbed : splitting or merging of vortex pairs 
occurs. The resulting vortex flow will then have a wavenumber which is inside the 
stable region. 

The perturbation flow patterns from the Eckhaus instability seem to explain the 
Taylor-Couette experiment observations. However, one should be cautious when 
using the above results to explain the details of the splitting and merging processes 
because the actual effects of the perturbations on the base vortices could be highly 
nonlinear and dependent on finite span effects. For example, if certain pairs of 
vortices begin to split or merge earlier than others, the following readjustment of 
spanwise wavenumbers across the span will change the wavenumbers of other 
vortices and thus change the splitting or merging processes of these other vortex 
pairs. However, we can say that splitting always occurs outside the left-hand side of 
the boundary and merging outside the right-hand side. 
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4.2. Channels with either curvature or rotation or both 
In channels with either curvature or rotation or both, most experiments have been 
done outside the Eckhaus stable region, where the maximum Eckhaus growth rate 
is positive and occurs at  b = 0.5. Figures 9 and 10 show two vortex flows (a = 2.0 in 
figure 9 and a = 4.0 in figure lo), their most unstable modes and linear superpositions 
of base flows plus perturbations at  Re = 2.ORe, in the curved channel with 7 = 0.975. 
Other unstable modes for different a (at Re = 2.OReC) can be found in figure 11 (the 
small waviness in figure l l a ,  d along z / A  = 0.5, 1.5 is caused by extremely small 
velocities being plotted with a fixed arrow size). At  this Re, all spanwise wavenumbers 
of the base flow are unstable to Eckhaus instability. In all three figures, z / A  = 0 ,  1.0 
and 2.0 are the centres of the base vortex pairs, where the fluid flows from the 
concave wall to convex wall (the inflow region). There are three types of unstable 
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FIQURE 11. Most unstable modes (projected onto the ( r ,  2)-plane) in a curved channel (7 = 0.975) 
at Re = 2.OReC and a: (a)  a = 1.25; (a) a = 2.5; (c) a = 3.0; ( d )  a = 3.5; ( e )  a = 5.0; b = 0.5 for all 
these modes. 
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modes shown in figures 9, 10 and 11 that occur for different ranges of a. In figure 
11 (a ) ,  when a = 1.25, there are five vortex pairs of the unstable mode in the space 
of two base pairs and the corresponding eigenvalue (b = 0.5) is complex. For 2.0 < 
a < 3.5 (figures 9 b, 11 M), three vortex pairs of the unstable mode take the space of 
two base pairs, though they do not have equal intensity or spanwise wavenumber. 
For a in this range, the eigenvalue with Eckhaus growth rate is always real for any 
b. In the range a > 3.5 (figures 10b and figure 11 e ) ,  there is only one vortex pair of the 
unstable mode in the space of two base pairs. In this range, Eckhaus eigenvalues are 
not always real for b =+ 0.5, but the eigenvalue with the maximum Eckhaus growth 
rate is still given by b = 0.5 and is real. Similar results are found in channels with 
rotation and curvature. 

Heuristic arguments based on the flow patterns of the unstable modes in figures 
9-11 suggest some vortices in the unstable modes will generate new vortex pairs, 
causing the splitting of base vortex pairs, and some will force base vortex pairs 
together, causing merging. For example, in figure 9 (b),  a simple argument suggests 
it is more likely that the vortex pair a t  z/h = 1.5 will develop than the one at z / h  = 
0.5. This is because the large perturbation vortices centred at  z/h = 1.0 and z / A  = 
2.0 induce flow at  the centres of the base vortices on either side of z/h = 1.5 causing 
them to spread apart. In contrast, near z/h = 0.5 the large perturbation vortices 
induce motion at  the centres of the base vortices straddling z/h = 0.5 causing them 
to move together, obstructing the formation of the secondary vortex pair at z / A  = 
0.5 (or z/h = 2.5). Figure 9 ( c )  shows the base flow (figure 9a) superimposed with the 
unstable mode (figure 96) whose kinetic energy has grown linearly to 7 YO of the base 
flow's kinetic energy. It can be seen that one new pair of secondary vortices begins 
to form at z/h = 1.5 near the concave wall. The original vortex pairs centred a t  
z/h = 1.0 and 2.0 spread apart from z/h = 1.5 and are squeezed toward z / A  = 0.5 and 
2.5. As the energy level of the perturbation increases to 20 % in figure 9 ( d ) ,  the new 
vortex pair grows bigger and moves away from the concave wall. This is a splitting 
event, since a new vortex pair appears between the base vortex pairs centred a t  
z/h = 1.0 and 2.0. The two base vortex pairs centred at z/h = 1.0 and 2.0 will be 
split apart by the new pair, yielding three pairs. Thus the vortex pair a t  z / A  = 1.5 in 
the most unstable eigenfunction is responsible for generating a new vortex pair in the 
outflow region of the base flow. When examining the eigenfunctions, the vortex pair 
which generates the new pair can be identified easily by the fact that it is centred 
about an inflow plane in the eigenfunctions. 

As the wavenumber a of the base flow increases, the intensity of the pair 
responsible for splitting becomes weaker, as is shown in figure 11 (b-d) .  When a > 3.5, 
this pair is absent, as shown in figures 10(b) and 11 ( e ) ,  and splitting cannot happen. 
In  addition, as a increases, the single vortices centred at  z/h = 0, 1.0 and 2.0 in the 
most unstable eigenfunction become stronger. These vortices are responsible for 
merging two base pairs together, as is seen in figure 10 at a = 4.0. Figure 10 (c) shows 
the base flow (figure 10a) perturbed by 50% (kinetic energy) of the most unstable 
mode (figure lob). Two neighbouring vortices (centred at z/h = 1.5) of the two base 
vortex pairs become smaller and weaker while the other two become bigger and 
stronger. As the amplitude of the perturbation is increased further, the two vortices 
on either side of z / h  = 1.5 eventually disappear while the other two vortices form 
into one pair. Thus two pairs merge into one pair. The large perturbation amplitudes 
used to produce figures 9 ( d )  and lO(c) are not linear amplitudes, but are used for 
visual clarity. The qualitative effects of the perturbations are independent of their 
amplitude. 
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The most unstable modes thus have two different effects on the base vortex flow, 
associated either with splitting or merging. There is not a clear cut wavenumber a 
that  divides the effects of the most unstable modes into vortex splitting or merging 
regions. For example at a = 3.0 in figure 11 (c), the small vortex pair at z/h = 0.5 
tends to cause the appearance of a new pair in the base flow a t  z /h  = 0.5, while the 
single vortices a t  z /h  = 0, 1.0 and 2.0 tend to cause merging of the two vortex pairs 
in the base flow on either side of z / h  = 1.5 and this merging effect in return allows 
room for the appearance of the new pair. Thus when this eigenfunction is imposed on 
the base flow, splitting and merging of vortex pairs are seen to occur at the same 
time, but a t  spanwise locations separated by one wavelength. For general a and b,  
we find no strict relation between b and the number of vortices in the most unstable 
modes. It depends on both b and a. However, it is always true that base vortex pairs 
with large wavenumbers merge, whereas small wavenumbers split. Since base 
vortices with a < 1.5 are not likely to occur experimentally because of the low growth 
rate of the primary instability a t  this a, subharmonic splitting and merging 
mechanisms will be the dominant feature of splitting and merging of vortex pairs in 
channels with either curvature or rotation or both. Since all two-dimensional vortices 
are unstable to spanwise perturbations a t  high enough Re, the splitting and merging 
of vortex pairs, as suggested by figures 9-11, will continually occur. 

Support for our results can be found from existing flow visualizations in channels 
with either curvature or rotation or both given by various authors (Ligrani et al. 
1990; Ligrani & Niver 1988; Alfredsson & Persson 1989; Matsson &, Alfredsson 1990) 
as well as in nonlinear simulations ($7).  Splitting and merging of vortex pairs is 
prevalent in these experiments. When visualized with reflective flakes, in plan view 
the splitting of vortex pairs is indicated by two new bright streaks which represents 
a vortex pair first appearing between two existing streaks. The existing streaks are 
then split (spread) apart by the two new streaks. This is seen for example in figure 
6 ( d ) ,  ( f )  of Alfredsson & Persson (1989) in channels with rotation or in figure 14(d) 
of Matsson & Alfredsson (1990) in a channel with both curvature and rotation. The 
disappearance of vortex pairs is indicated by adjacent bright streaks which 
occasionally merge together (cf. figure 6e of Alfredsson & Persson 1989; figure 14d 
of Matsson & Alfredsson 1990). We suggest that subharmonic splitting and merging 
are the mechanisms behind these phenomena. Splitting and merging of vortex pairs 
can also be found in flat plate boundary layers with rotation (Masuda & Matsubara 
1989) and concave wall boundary layer (Bippes 1978) experiments. A similar 
Eckhaus instability mechanism in these flows may cause the splitting and merging 
of vortex pairs. 

The actual splitting and merging processes observed in experiments are 
complicated and nonlinear. Ligrani et al. (1990) and Ligrani & Niver (1988) 
provide observations of these processes in a curved channel (7 = 0.979). During the 
splitting of vortex pairs, according to their observation, new vortex pairs are formed 
first near the concave wall between other pairs, then followed by a readjustment of 
spanwise wavenumber. When viewed in the radial-spanwise plane, the new vortex 
pairs appear to ‘pop’ out of the concave wall. Ligrani & Niver called them secondary 
vortices. This observation is consistent with our result in figure 9(c, d) .  The 
formation of the secondary vortices observed by Ligrani & Niver (1988) may thus be 
due to Eckhaus instability. 

Further numerical results show that base vortices which have secondary vortices 
between them are much more unstable to spanwise perturbations. For certain a we 
find two base solutions exist, one with secondary vortices and one without. Such non- 
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FIGURE 12. Streamfunctions of two-dimensional vortices in a rotating channel (Ro = 0.03) at 
Re = 472.5, u = 2.0: (a)  without secondary vortices; ( b )  with secondary vortices. The Eckhaus 
growth rates are ( a )  u = 0.059 and (6) u = 0.108. 

uniqueness also occurs in Taylor-Couette flow (e.g. Mayer-Spasche & Keller 1985). 
Figure 12 shows the stream functions of the flows without and with such secondary 
vortices in a channel with rotation (Ro = 0.03, Re = 472.5). The related Eckhaus 
growth rate jumps from 0.059 in the absence of the secondary vortices to 0.108 when 
the secondary vortices are present. Comparison for other u can be found in figure 13 
where there is always a large increase in the Eckhaus growth rate when secondary 
vortices are present. 

The above arguments are based on linear theory, which only applies to the 
beginning of splitting and merging processes prior to the onset of nonlinearity. In 
experiments, spanwise periodicity is not imposed so that if any two vortex pairs start 
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to merge with each other earlier or more rapidly than others, neighbouring vortex 
pairs will move in, causing a decrease in spanwise wavenumber of tQese neighbouring 
vortices (readjustment of a) ,  and suppression of their merging. Similarly, if certain 
vortex pairs begin to split apart earlier or more rapidly than others, they will tend 
to squeeze neighbouring vortices and obstruct the splitting of these neighbouring 
vortex pairs. Thus it is not surprising that in experiments the splitting and merging 
processes produce many patterns once the base vortices begin to lose their symmetry 
and move toward or away from each other. However, two to three splitting and two 
to one merging mechanisms are likely to be one of the major features of the transition 
from vortex Aow to turbulence in channels with either curvature or rotation or both. 

5. Wavenumber selection 
Our discussion in $4 suggests that the splitting and merging processes are sensitive 

to the rate at which local perturbations develop, i.e. to the local Eckhaus growth rate 
u. Vortices which yield smaller v produce a region where the perturbations take a 
longer time to develop, so that splitting or merging processes occurring elsewhere will 
suppress the splitting or merging of vortex pairs with low Eckhaus growth rate. Thus 
vortices with relatively lower growth rate are more likely to be observed in 
experiments. Figure 14 shows a plot of the Eckhaus growth rate u(b = 0.5) vs. a a t  
different Re in the curved channel with 7 = 0.975. For Re 2 2.2Rec, u(a) has a 
minimum. When contours of ~7 are plotted in a (a, Re)-plane this minimum appears 
as a valley and we call it the Eckhaus valley. As Re increases, both sides of the valley 
become steeper. Based on our above discussion, observed wavenumbers should be 
close to this valley. For Re < 2.2Rec, u varies little with a and here Eckhaus 
instability does not play a major role in the wavenumber selection process. Thus when 
Re < 2.2ReC, without any other nonlinear selection mechanism the observed 
wavenumbers should be close to the ones with maximum primary growth rate, since 
these vortices develop most rapidly from the one-dimensional Poiseuille type flow. 
Figure 15 shows the Eckhaus valley for 7 = 0.975 in comparison with the 
wavenumbers observed by Kelleher, Flentie & McKee (1980) in a curved channel 
with 7 = 0.979. Also shown are the wavenumbers with maximum primary growth 
rate and maximum pressure gradient (Finlay et aE. 1988). For Re < 2.2Rec, the 
observed wavenumbers are close to the ones with maximum primary growth rate. 
For Re >, 2.2Re,, the observed wavenumbers are close to the Eckhaus valley. This is 
consistent with our discussion. 

A similar comparison can be found in figure 16 a t  Re = 175 and 472.5 in channels 
with rotation. The wavenumbers were measured by Alfredsson & Persson (1989) a t  
three different downstream locations y/d = 40, 80 and 120. I n  figure 16(a) the 
observed wavenumbers a t  y/d = 40 are closer to those with maximum primary 
growth rate than the Eckhaus valley. As the downstream distance increases to 80 
and 120, the observed wavenumbers become much closer to the Eckhaus valley. This 
suggests that near the entrance of the channel where the flow is still developing from 
one-dimensional Poiseuille type flow to two-dimensional vortices, the primary 
instability plays an important role in the wavenumber selection process. Once the 
two-dimensional vortices are more fully developed, the Eckhaus instability sets in 
and the wavenumbers of the vortices are selectcd by the Eckhaus valley. This is 
particularly noticeable for Ro >, 0.05 (RelRe, 2 2.566) in figure 16(a), where the 
Eckhaus valley and observed wavenumbers diverge significantly from the curve of 
maximum primary growth rate. 
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FIQURE 1 5 . 0 ,  Eckhaus valley ; 0,  the curves of maximum primary growth rate ; and + , maximum 
pressure gradient of Finlay et al. (1988) in a curved channel with 7 = 0.975, and x ,  the 
wavenumbers of two-dimensional vortices observed by Kelleher et al. (1980) in 71 = 0.979. -----, The 
primary stability of Finlay et al. is included for reference. 

In channels with rotation Ro < 0.25, the critical Reynolds number Re, decreases as 
the rotation number Ro increases (Alfredsson & Persson 1989). So for a given Re, 
RelRe, increases as Ro increases. Our results indicate the Eckhaus valley becomes 
deeper and narrower with increasing RelRe,, making it a more effective wavenumber 
selection mechanism at higher RelRe,. Figure 16(a)  indeed shows that the effect of 
the Eckhaus instability on wavenumber selection becomes more obvious as RelRe, 
increases. Figure 16(b) shows that at  high RelRe, (3.37 < Re/Re, < 6.3 in figure 
16b) the Eckhaus valley provides a much better prediction for the observed 
wavenumber than the primary instability. 

Similar results are found in channels with both curvature and rotation. Figure 17 
shows a plot of the maximum Eckhaus growth rate VS. a at different Ro in the curved 
channel with y = 0.975 and Re = 180. As (Ro) increases in figure 17, the slopes of the 
Eckhaus valley become steeper. Increasing lRol is thus similar to increasing Re in 
curved channels in that both cause an increase in the slope of the side of the Eckhaus 
valley. Figure 18 shows the corresponding Eckhaus valley and the wavenumbers 
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FIQURE 16. 0,  Eckhaus valley, -----, the curve of maximum primary growth rate and the observed 
wavenumbers of two-dimensional vortices of Alfredsson & Persson (1989) in a rotating channel at 
different downstream locations y l d :  0 ,  y l d  = 40; x , y / d  = 80; +, y / d  = 120. In (a), Re = 175; in 
( b ) ,  Re = 472.5. 

which have the maximum primary growth rate. Matsson & Alfredsson (1990) provide 
experimental flow visualizations of vortices in channels with both curvature and 
rotation but the wavenumbers of the vortices are not available in their publication, 
so no comparison is made here. 

Matsson & Alfredsson (1990) observe a range of Ro where rotation opposes 
curvature and restabilizes the flow to a one-dimensional state. When Ro = 0 at 
Re = 180, they observe two-dimensional vortices. When Ro decreases to -0.015, 
they observe a complete cancellation of vortices by rotation. In our numerical 
computation, we cannot obtain any steady two-dimensional vortices near this 
parameter range. As Ro decreases further, two-dimensional vortices begin to develop 
again in line with Matsson & Alfredsson’s results. 

At sufficiently high RelRe, and at locations far enough downstream from the inlet, 
two-dimensional vortices in curved and/or rotating channels lose their stability to 
streamwise perturbations and develop into three-dimensional wavy vortices (Finlay 
et a2. 1988; Finlay 1990). The spanwise wavenumber selection process is then no 
longer just determined by the Eckhaus instability. For example, in the curved 
channel with 7 = 0.975, two-dimensional vortices first lose their stability to 
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FIGURE 17. Maximum Eckhaus growth rate u as a function of the spanwise wavenumber a of two- 
dimensional vortices in a curved-rotating channel (7 = 0.975) at Re = 180. In (a), Ro < 0: 0 ,  
Ro=-0.025;A,Ro=-0.035; +,Ro=-0.045; O,Ro=-0.055; O,Ro=-O.ll .In(b),Ro>O: 
0,  Ro = 0.015; A, RO = 0.025; +, RO = 0.035; 0, RO = 0.045; 0,  RO = 0.055. 
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FIQURE 18. 0,  Eckhaus valley and 0,  the curve of maximum primary growth rate for a 

curved-rotating channel (7 = 0.975) at Re = 180. 
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streamwise perturbations at Re; = 1.2Be, and a; = 2.2, developing into undulating 
wavy vortices (Finlay et al. 1988) and calculations by us show a t  Re: = 1.92Re, and 
a: = 2.58, they develop into twisting vortices (other values of a require larger Re for 
wavy vortices to develop). Little is known about the stability of three-dimensional 
vortices in channels with either curvature or rotation or both. The effect of the wavy 
instability on wavenumber selection is unknown. In  their numerical simulations, 
Finlay et al. (1988) reported that streamwise waviness delayed the onset of vortex 
doubling to higher Re. 

Competition between Eckhaus instability and wavy instability will be dominated 
by wavy instability when the corresponding growth rates of Eckhaus instability are 
much less than those of the wavy instability. For example, in figure 16(a), the ratio 
of the average Eckhaus growth rate to the wavy growth rate is about 0.7. Here good 
agreement is found between the observed wavenumbers and the Eckhaus valley. 
Thus, when the Eckhaus growth rate is not that much less than that of the wavy 
instability, it appears that splitting and merging occur before the vortices develop 
into three-dimensional vortices and the Eckhaus instability plays an important role 
in wavenumber selection. In  figure 16(b) this ratio is 0.2, much sma,ller than in figure 
16 (a) .  The difference between the Eckhaus valley and the observed wavenumbers 
suggests that there is some effect due to the three-dimensionality of the vortices. 
However, little can be said on this issue without performing a stability analysis of 
three-dimensional wavy vortex flow. 

6. Recurrent splitting and merging 
The repetitive appearance of splitting and merging was first reported by Ligrani 

& Niver (1988) in a curved channel (7 = 0.979). It only occurred at certain Re (Re = 
2.03ReC and 2.14Rec). The flow visualization results obtained by Alfredsson & 
Persson (1989) in channels with rotation (cf. their figure 6e) and by Matsson & 
Alfredsson (1990) in channels with both curvature and rotation (cf. their figure 14d) 
suggest that  such a phenomenon also exists in rotating or curved-rotating channels. 
For example in a curved-rotating channel at Re = 180, 7 = 0.975, Ro = -0.025 
(figure 14d of Matsson & Alfredsson 1990), we can see that a short time after two 
vortex pairs split apart into three pairs, two of these three pairs merge back into one 
and then split again with the other one into three pairs. The mechanism behind this 
is still the subharmonic two to one merging and two to three splitting. Our discussion 
in $ 4  indicates that when the flows resulting from splitting or merging have the same 
Eckhaus growth rate as before the split or merge, the repetitive appearance of 
splitting and merging will occur. This may happen in two cases: (i) where the 
Eckhaus valley is very flat and (ii) when the wavenumbers of the flows resulting from 
splitting and merging alternate between opposite sides of the Eckhaus valley where 
the Eckhaus growth rates are nearly the same. It is difficult to predict when the 
second case will happen. Compared with the first case, the conditions required for the 
second case are much more restrictive, so the chance of it being observed is 
considerably less than in case (i). In the first case, the Eckhaus growth rate is 
approximately the same for any vortex pair, so no vortex wavenumber is significantly 
more stable than any other. There is thus a good chance for the recurrent appearance 
of splitting and merging. In  the curved channel with 7 = 0.975, this range is 1.7 < 
Re/Rec < 1.9 (figure 14). Ligrani & Niver observed repetitive splitting and merging 
when close to this region. For Matsson & Alfredsson’s case, the corresponding 
Eckhaus growth rate is shown in figure 17(a). In the range -0.025 d Ro < -0.035, 
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the Eckhaus growth rate curve is relatively flat near its minimum value. Repetitive 
splitting and merging thus mostly appears to occur in parameter regimes where the 
Eckhaus valley is relatively flat. 

7. Nonlinear simulation of splitting and merging of vortex pairs 
The results on splitting and merging given in $4, 5 and 6 are based on linear 

stability theory. Nonlinearity sets in once a splitting or merging event develops past 
the initial linear stage. In order to study the nonlinear aspect of the problem and how 
it affects the validity of our linear theory results, we use the Galerkin spectral 
numerical method of Moser, Moin & Leonard (1983) to simulate the axisymmetric, 
time-dependent, incompressible Navier-Stokes equations in a curved channel. The 
code is a modification of the one used to study wavy Taylor vortices by Moser et al. 
(1983), wavy Dean vortices by Finlay et al. (1988), wavy vortices in rotating channel 
flow by Finlay (1990) and to perform a direct simulation of turbulence in the curved 
channel (Moser & Moin 1984, 1987). Periodic boundary conditions are used in the 
spanwise direction. We will discuss two simulations. The first of these demonstrates 
the nonlinear details of splitting and merging, while the second demonstrates 
wavelength selection due to Eckhaus instability. 

According to the linear stability analysis of $4, the spanwise wavenumber of the 
most unstable disturbance is &x (i.e. b = 0.5), where a is the spanwise wavenumber of 
base flow. In our first simulation, the spanwise computational domain is chosen 
initially to include two complete vortex pairs. Small, two-dimensional random 
disturbances ( < 0.1 %U) are used to perturb the initial two-dimensional vortex flow. 
The solution progresses in time with constant mass flux imposed. The energies in the 
highest modes are monitored to ensure that adequate resolution is achieved. The 
simulation parameters are Re = 1.77fBeC and 7 = 0.975. The wavenumber of the 
initial vortices is a = 2.0. At these parameters, we use 40 spanwise Fourier modes 
and 32 Chebyshev polynomials in the radial direction. 

Figure 19 shows the flow velocity projected onto the (r,z)-plane at different 
timesteps. The initial conditions for the simulation are shown in figure 19(a). The 
centres of the initial two pairs are at  z/h = 0.5 and 1.5. At t = 5700d/2U in figure 
19(b), a small new vortex pair has begun to form near z/h = 0 (and z/h = 2.0). The 
original pairs are squeezed toward z / A  = 1.0. During the early stage of the simulation 
when the disturbances are very small, the temporal growth rate of the disturbances 
is 0.0079 + O.Oi, compared to 0.0080 + 0.Oi for the most unstable mode from linear 
stability analysis. This shows that the most unstable eigenfunction from the linear 
theory is indeed the dominant unstable disturbance (and also further verifies our 
linear stability code). The appearance of the new pair of vortices in figure 19(b)  is 
associated with a splitting event and is caused by the growth of the most unstable 
eigenfunction from the random initial disturbances. The flow patterns obtained in 
the nonlinear simulation up to this time are very similar to those obtained from the 
linear stability analysis by imposing the most unstable eigenfunction on the base 
flow, as depicted in figure 9(c, d) .  When t = 62OOd/2U (figure 19c), the new pair is 
well developed and the computational box is filled with three strong pairs. At the 
same time, a merging process of the two original pairs has begun. This can be seen 
more clearly in figure 19 (d ). The merging process is similar to that depicted by linear 
stability analysis in figure 10 (c) : two neighbouring vortices of the two original vortex 
pairs become weaker while the other two vortices become stronger. By the time t = 
8450d/2U in figure 19(e), two vortices have completely disappeared and the two 



686 Vortices in curved andlor rotating channel flow 

" 0 0.5 1 .o 1.5 2.0 
Z I A  

FIQURE 19. Nonlinear splitting and merging of vortex pairs at Re = 1.776ReC, 71 = 0.975. The flow 
is projected onto the ( T ,  %)-plane at time ( a )  0, ( b )  5700d /20 ,  ( c )  6200d/20,  ( d )  6450d /20  and ( e )  
8450d/20. The vortices in (a) and (e) have a = 2.0. 

original vortex pairs have merged into one pair. The new pair of vortices that 
appeared owing to splitting has adjusted itself so that the velocity field of the flow 
has returned exactly to  its original pattern, but with a spanwise shift of half a 
wavelength. The above splitting and merging processes continue periodically in time. 
Compared with the predictions from linear theory in figures 9 and 10, the similarity 
is striking. The simultaneous splitting and merging effects of the most unstable 
eigenfunction discussed in $4 are demonstrated clearly in figure 19. When splitting 
occurs, a new pair is always generated between two base pairs. When merging occurs, 
two base pairs merge into one pair. 

Outside the Eckhaus stable region, all wavenumbers are unstable. However, our 
discussions in $ 5 indicate that vortices with wavenumbers in the Eckhaus valley are 
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FIGURE 20. The pressure gradient parameter Ap as a function of time at Re = 2.2Re, in a curved 

channel y = 0.975 with aspect ratio r = 6x:l and periodic spanwise boundary conditions. 

the least unstable to splitting and merging and are likely to be observed more often 
in experiments. In order to study the validity of this result in the presence of 
nonlinear splitting and merging processes and the interactions between vortices with 
different wavenumbers, we select the aspect ratio of our computational box in our 
second simulation to be 6n: : 1. Periodic boundary conditions are again imposed in the 
spanwise direction, but now over a spanwise extent three times larger than in the 
first simulation. Since an integer number of pairs of vortices must appear in the 
simulation region, the average wavenumber of the vortices is restricted to $, where 
n is an integer. We use 96 spanwise Fourier modes and 16 Chebyshev polynomials 
(in the radial direction) in this simulation. 

We start the simulation using curved channel Poiseuille flow with low-amplitude 
random noise (< 0.1 %O) superimposed and use Re = 2.2h?e, in a curved channel 
having 7 = 0.975. Figure 20 shows the time development of the pressure gradient 
parameter Ap,  defined as (Finlay et al. 1988) 

where - (I/r)(ClP/M) is the streamwise pressure gradient of curved channel Poiseuille 
flow and - ( l / r ) ( P / M )  is the streamwise pressure gradient of the vortex flow 
averaged over the computational box. 

After t = 500d/20, finite-amplitude two-dimensional vortices develop rapidly. I n  
figure 20, the corresponding A p  increases dramatically. Figure 21 ( a )  shows contours 
of the Stokes stream function a t  t = 650d/20. Excluding the three pairs near the 
centre of the box where a splitting event is underway, the average wavenumber of 
the vortices a t  this time is 2.79. This is very close to the wavenumber a = 2.82 which 
has the maximum primary instability growth rate (see figure 15). This demonstrates 
that during the early stage of the development of vortex flow, the primary instability 
does play an important role in wavenumber selection process, as suggested in 95. 

As the solution proceeds in time, the flow goes through a sequence of splitting and 
merging processes and there is a decrease in the average wavenumber of the vortices 
until t = 1300d/20. For t > 1300d/20, the wavenumber of the vortices remains near 
the Eckhaus valley, which is rather flat and lies between a = 2.1 and a = 2.35 (see 
figure 14). But it continues to fluctuate owing to splitting and merging events. The 
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FIQURE 21. Contours of Stokes stream function for curved channel flow at Re = 2.2ReC, 7 = 0.975 
are shown in the ( T ,  2)-plane at time (a) 65Od/20, (b) 1850d/20, (c) 1949d/2l7, (d) 1978d/20, (e) 
2009d/2O7, ( f )  2069d/20 and (9) 2099d/20. The aspect ratio is r = 6n: : 1 ,  with periodic spanwise 
boundary conditions. 

time record of Ap is useful for determining when splitting and merging events occur, 
since according to Finlay et al. (1988), for a < 3.7 at  Re = 2.2Re, and 7 = 0.975, the 
smaller a is, the smaller Ap is. Examining Ap(t)  and the velocity field, we find that 
whenever Ap decreases, merging processes are underway, but whenever A€' increases, 
there are splitting processes dominating the flow. Figure 21 (b) show a typical cycle 
of the flow development from t = 1850d/20 to 2099d/20. I n  figure 21(b), the 
average wavenumber of the first three vortex pairs from the left-hand side of the box 
is 2.37, while the rest of the vortices have a wavenumber of 2.19, which is in the 
Eckhaus valley. There is a merging process just underway between the first two pairs 
from the left. This merging process becomes clearer in figure 21 (c ) .  For the rest of the 
vortices, there is a very small decrease in wavenumber from 2.19 to  2.13. When T = 
1978d/2U in figure 21 ( d ) ,  one vortex pair has completely disappeared. The pressure 
gradient Ap reaches a local minimum (cf. figure 20). 

In  figure 21 ( c ) ,  there is a new pair beginning to  appear near the left-hand end of 
the box. This becomes clearer in figure 21 ( d )  and 21 ( e ) .  Another new pair also begins 
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to develop near the centre of the box where the vortices have smaller a. The rest of 
the vortices remain essentially unchanged. When t = 2069d/20 in figure 21 (f ), the 
new pair near the left-hand side is almost fully developed. The other one near the 
centre continues to grow. The rest of the vortices have been squeezed somewhat and 
there is an increase in their wavenumbers (from 2.17 in figure 21d to 2.57 in figure 
21f). It can be seen that the second and third pairs from the left in figure 21 (f) have 
begun a merging process. In  figure 21 (g), the new pair near the centre has completed 
its development. At this time, the wavenumber is nearly the same for all vortices and 
the average wavenumber is 2.67. This high wavenumber causes a local maximum in 
Ap. The merging of the second and third pairs from the left proceeds. As these two 
pairs continue to merge, the other vortices experience an adjustment in their 
wavenumbers which results in smaller wavenumbers. From figure 21 and similar 
results a t  other times in the simulation, we find that when the wavenumber of several 
pairs of neighbouring vortices is close to the Eckhaus valley, the wavenumber of 
these pairs remains nearly constant for a long time and their adjustment due to 
splitting and merging events is very weak, as is the case in figure 21 (a). However, 
when the wavenumber of two or more neighbouring pairs is not close to the Eckhaus 
valley, there is a rapid and large change in wavenumber. 

The simulation results also show that when the average wavenumber of the 
vortices is near the Eckhaus valley, the development of splitting and merging is 
relatively slow. When the wavenumbers of vortices are far from the Eckhaus valley, 
the pressure gradient experiences rapid and large fluctuations as a result of 
simultaneous multiple splitting or merging processes. A vortex flow with wave- 
numbers far from the Eckhaus valley does not last long. Thus, when averaged on 
time, the average wavenumber is close to the Eckhaus valley. 

Figure 21 also demonstrates repetitive splitting and merging. In figure 21 (b-g), the 
first two pairs from the left merge, and then this is followed by a splitting event with 
the neighbouring vortex pair on the left-hand side. The above simulation results are 
consistent with our discussion in $5 and 56. For fully developed two-dimensional 
vortex flow, Eckhaus instability plays an important role in the wavelength selection 
process and splitting and merging of vortices occur continuously. 

8. Conclusion 
Eckhaus instability was examined for the flow in channels with either curvature 

or rotation or both, using linear stability theory and spectral methods. The results 
explain several experimental phenomena. Curvature and rotation both cause similar 
instabilities with respect to spanwise perturbations in these geometries. The Eckhaus 
stable region was found to be a small closed region, different from any other periodic 
flow known to the authors. The stability criterion based on amplitude expansion 
given by Eckhaus (1965) does not always apply, even in the region close to Re,. 
Outside the Eckhaus stable region, splitting and merging of vortex pairs occur and 
the spanwise wavenumbers are selected by the Eckhaus instability. Two pairs of 
vortices are split apart by a new pair to yield three pairs if the wavenumber of the 
vortices is small. If instead the wavenumber is large, the two pairs merge into one 
pair. Most experimentally observed wavenumbers are the ones which are least 
unstable to spanwise perturbations. A t  certain Re all vortices are equally unstable to 
spanwise perturbations and repetitive splitting and merging of vortex pairs occur. 
The wavenumber selection process as the flow proceeds downstream can be described 
as follows. Near the entrance of the channel, the flow is one-dimensional Poiseuille 
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type flow. Further downstream, vortices with spanwise wavenumber near those with 
maximum primary growth rate develop first. At these locations, the primary 
instability plays an important role in the wavenumber selection process. Further 
downstream, as the flow approaches fully developed two-dimensional vortex flow, 
the Eckhaus instability or wavy instability sets in, depending on which has dominant 
growth rate. When Re is not too high, the spanwise wavenumber of the flow lies in 
the Eckhaus valley, i.e. the region of low Eckhaus growth rate. When Re is very high, 
the stability of three-dimensional vortices must be examined to predict wavenumber 
selection. 
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